Abstract

Diatoms are an important group of algae that can produce intricate silicified cell walls (frustules). The complex process of silicification involves a set of enigmatic integral membrane proteins that are thought to actively transport the soluble precursor of biosilica, dissolved silicic acid. Full-length silicic acid transporters are found widely across the diatoms while homologous shorter proteins have now been identified in a range of other organisms. It has been suggested that modern silicic acid transporters arose from the union of such partial sequences. Here, we present a computational study of the silicic acid transporters and related transporter-like sequences to help understand the structure, function and evolution of this class of membrane protein. The AlphaFold software predicts that all of the protein sequences studied here share a common fold in the membrane domain which is entirely different from the predicted folds of non-homologous silicic acid transporters from plants. Substrate docking reveals how conserved polar residues could interact with silicic acid at a central solvent-accessible binding site, consistent with an alternating access mechanism of transport. The structural conservation between these proteins supports a model where modern silicon transporters evolved from smaller ancestral proteins by gene fusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call