Abstract

We developed an experiment to elicit human trust dynamics in human-machine interaction contexts and established a quantitative model of human trust behavior with respect to these contexts. The proposed model describes human trust level as a function of experience, cumulative trust, and expectation bias. We estimated the model parameters using human subject data collected from two experiments. Experiment 1 was designed to excite human trust dynamics using multiple transitions in trust level. Five hundred and eighty-one individuals participated in this experiment. Experiment 2 was an augmentation of Experiment 1 designed to study and incorporate the effects of misses and false alarms in the general model. Three hundred and thirty-three individuals participated in Experiment 2. Beyond considering the dynamics of human trust in automation, this model also characterizes the effects of demographic factors on human trust. In particular, our results show that the effects of national culture and gender on trust are significant. For example, U.S. participants showed a lower trust level and were more sensitive to misses as compared with Indian participants. The resulting trust model is intended for the development of autonomous systems that can respond to changes in human trust level in real time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.