Abstract

In the present research, computational modeling of particle transport and distribution emitted from a Laserjet printer was carried out in a ventilated room. A seated manikin was integrated into the study room and the manikin was evaluated in two cases: heated and unheated. Effects of different ventilation configurations of the room on the particle distribution were studied, including three displacement ventilation systems and a mixing ventilation system. The printer was located on different sides of the manikin and the particle concentrations in the breathing zone of the manikin due to the printer’s particles were evaluated in all the ventilation configurations. The averaged particle concentration in the breathing zone of the manikin was calculated and validated with the experimental and numerical data available in the literature. The results of the present study showed that in case of the heated manikin, the particle concentration due to the printer pollutants is significant in the breathing zone of the manikin. The results also showed that when the printer is located on the front side of the manikin, the particle concentration in the breathing zone is quite high in most of the used ventilation configurations. Furthermore, it was found that the mixing ventilation system has a lower mean particle concentration in the breathing zone compared to the most displacement ventilation systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.