Abstract

Ground-penetrating radar (GPR) is a mature technology which has developed into a popular tool for subsurface imaging; however its application in landmine detection is still in its infancy. Landmines are typically buried in dispersive soils below a rough surface where the effectiveness of conventional air-coupled GPR is limited. By utilizing ground-contact antennas the signal penetration is dramatically improved and data analysis is simplified. In order to canvas an area while achieving ground-contact with the antennas, this research proposes that the antennas be mounted to the bottom of the feet of a walking robotic platform developed by Square One Systems Design, called the Tri-Sphere Multi-Mode Mobility Platform. Using three antennas in both the transmitting and receiving modes, three unique bistatic GPR traces can be obtained from which a novel anti-personnel landmine detection and localization method is proposed. For each GPR trace, the target reflection is enhanced using circular polarization and is extracted using background removal. The full-path travel times are then determined by correlating the target reflections with a reference signal. These travel times are used to geometrically determine the target position to a single subsurface scattering point, which is identified as the potential target location. This detection method is fully autonomous, thereby allowing the robot to canvas a large amount of area and mark potential threats without any human interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call