Abstract

Low dose hyper-radiosensitivity (HRS) and induced radioresistance (IRR) can be observed in the dose dependence of survival of many different cell lines. While surviving fraction decreases exponentially in a large-scale view, a local minimum can be found at around 0.5 Gy. Although, there is evidence that the regulation of apoptosis and DNA repair are involved in HRS and IRR, the fundamental causes of the phenomena remain unclear. The objective of the present study is to test whether the principle of minimum mutation load can provide an explanation for both low dose HRS and IRR. For this purpose, a mathematical model was elaborated considering radiation induced mutagenic DNA lesions as well as cell divisions as sources of mutations. It was presumed that cell number is in dynamic equilibrium in the tissue, the number of mutations follows Poisson distribution, and its average is proportional to absorbed dose. For each value of absorbed dose, the minimum number of mutations were computed for different surviving fractions. Then that surviving fraction was plotted that results in the lowest number of mutations. One minimum or multiple minima can be seen in the dose dependence of surviving fractions with reasonable values for the model parameters: spontaneous and radiation induced mutation rate. Although the mechanisms remain unclear, the principle of minimum mutation load provides a potential explanation for low dose HRS and IRR and for the fact that they are mostly observed in cell lines with defected DNA repair.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.