Abstract

Hemodynamics play a vital role for the risk of thrombosis in the left atrial appendage (LAA) and left atrium (LA) for patients with atrial fibrillation. Accurate prediction of hemodynamics in the LA can provide important guidance for assessing the risk of thrombosis in the LAA. Patient specificity is a crucial factor in representing the true hemodynamic fields. In this study, we investigated the effects of blood rheology (as a function of hematocrit and shear rate), as well as patient-specific mitral valve (MV) boundary conditions (MV area and velocity profiles measured by ultrasound) on the hemodynamics and thrombosis potential of the LAA. Four scenarios were setup with different degrees of patient specificity. Though using a constant blood viscosity can classify the thrombus and non-thrombus patients for all the hemodynamic indicators, the risk of thrombosis was underestimated for all patients compared with patient-specific viscosities. The results with least patient specificities showed that patients prone to thrombosis predicted by three hemodynamic indicators were inconsistent with clinical observations. Moreover, though patients had the same MV inlet flow rate, different MV models lead to different trends in the risk of thrombosis in different patients. We also found that endothelial cell activation potential and relative residence time can effectively distinguish thrombus and non-thrombus patients for all the scenarios, relatively insensitive to patient specificities. Overall, the findings of this study provide useful insights on patients-specific hemodynamic simulations of the LA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.