Abstract

In this paper, photoresistive properties in pristine and homogeneously boron and nitrogen doped semiconducting single-walled carbon nanotubes is studied. The calculations are based on density functional theory in combination with Non-Equilibrium Greens Function formalism. The resistance in the SWCNT models is found to decrease with the increasing flux levels. At low electrode voltages, nitrogen doped model shows more photoresistive effect while at high electrode voltages, the most significant photoresistive effect is found in boron doped model. The study reveals that the resistance of the proposed SWCNT systems is dependent on the light intensity, and the conventional boron and nitrogen doping increases the photoresistance by manifold. The models are promising for wide range of applications in the future electronic industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.