Abstract

The work aims to understand the blast induced injury mechanism and facilitate the development of protection and treatment. Novel multi-scale and multi-physics computational models of coupled blast physics, whole body biodynamics and injury biomechanics are presented. Modeling components include blast wave threat characterization, anatomy-based high-fidelity human model, human body blast loading, biodynamics and body/brain biomechanics leading to primary injury, as well as the multi-physics solver suitable for high-performance computing. The coupled gas dynamics and biomechanics solutions were validated against shock tube test data. The parametric simulations of human body exposed to blasts were conducted to find biomechanical responses and brain injury mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.