Abstract
Here homogeneous-heterogeneous reactions in three-dimensional flow of water based nanofluid saturating a porous medium is modeled. A bidirectional nonlinearly stretching surface has been employed to generate the flow. The characteristics of nanofluid are explored using CNTs (single and multi walled carbon nanotubes). Equal diffusion coefficients are considered for both reactants and auto catalyst. The conversion of partial differential equation equations (PDEs) to ordinary differential equations (ODEs) is done via appropriate transformations. Optimal homotopy approach is implemented for solution of governing problem. The optimal solution relations of velocities and concentration are explored through plots by using several values of physical parameters. The coefficients of skin friction are examined through graphs. Our results indicate that the skin friction coefficients are enhanced for larger values of nanoparticle volume fraction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.