Abstract

Bud outgrowth is regulated by the interplay of multiple hormones, including auxin, cytokinin, strigolactones, and an unidentified long-distance feedback signal that moves from shoot to root. The model of bud outgrowth regulation in pea (Pisum sativum) includes these signals and a network of five RAMOSUS (RMS) genes that operate in a shoot-root-shoot loop to regulate the synthesis of, and response to, strigolactones. The number of components in this network renders the integration of new and existing hypotheses both complex and cumbersome. A hypothesis-driven computational model was therefore developed to help understand regulation of shoot branching. The model evolved in parallel with stepwise laboratory research, helping to define and test key hypotheses. The computational model was used to verify new mechanisms involved in the regulation of shoot branching by confirming that the new hypotheses captured all relevant biological data sets. Based on cytokinin and RMS1 expression analyses, this model is extended to include subtle but important differences in the function of RMS3 and RMS4 genes in the shoot and rootstock. Additionally, this research indicates that a branch-derived signal upregulates RMS1 expression independent of the other feedback signal. Furthermore, we propose xylem-sap cytokinin promotes sustained bud outgrowth, rather than acting at the earlier stage of bud release.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.