Abstract

Perforated steel plates are structural components widely employed in engineering. In several applications these panels are subjected to axial compressive load, being undesired the occurrence of buckling. The present work associates the computational modeling and the constructal design method to obtain geometries, which maximizes the mechanical behavior for these components. A numerical model was used to tackle with elastic and elasto-plastic buckling. Square and rectangular plates with centered elliptical cutouts were considered and several hole volume fractions and ratios between the ellipse axes (H0/L0) were taken into account. Stress limit improvements around 100% were achieved depending only on the cutout shape.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call