Abstract
Fatigue cracking and failure of inelastic heterogeneous asphalt concrete mixtures were modeled computationally with the finite element method. The model incorporates elastic behavior of the aggregate particles, visco-elastic behavior of the asphalt matrix, and time-dependent fracture both within the asphalt matrix and along boundaries between matrix and aggregate particles. Rate-dependent progressive cracking up to failure was implemented by incorporation of a cohesive zone fracture model. The resulting model was used to simulate comprehensive fatigue damage-associated mechanical behavior including microcracking, macrocracking, and eventual sample failure of several asphalt mixtures composed of different mixture constituents, which results in different damage evolution characteristics. Simulation results were compared with real fatigue testing data in both load-controlled and displacement-controlled modes and demonstrated good correlations to laboratory data with model calibrations. The approach proposed ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.