Abstract

Vascular Endothelial Growth Factor (VEGF) signal transduction is central to angiogenesis in development and in pathological conditions such as cancer, retinopathy and ischemic diseases. We constructed and validated a computational model of VEGFR2 trafficking and signaling, to study the role of receptor trafficking kinetics in modulating ERK phosphorylation in VEGF-stimulated endothelial cells. Trafficking parameters were optimized and validated against four previously published in vitro experiments. Based on these parameters, model simulations demonstrated interesting behaviors that may be highly relevant to understanding VEGF signaling in endothelial cells. First, at moderate VEGF doses, VEGFR2 phosphorylation and ERK phosphorylation are related in a log-linear fashion, with a stable duration of ERK activation; but with higher VEGF stimulation, phosphoERK becomes saturated, and its duration increases. Second, a large endosomal fraction of VEGFR2 makes the ERK activation reaction network less sensitive to perturbations in VEGF dosage. Third, extracellular-matrix-bound VEGF binds and activates VEGFR2, but by internalizing at a slower rate, matrix-bound VEGF-induced intracellular ERK phosphorylation is predicted to be greater in magnitude and more sustained, in agreement with experimental evidence. Fourth, different endothelial cell types appear to have different trafficking rates, which result in different levels of endosomal receptor localization and different ERK response profiles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.