Abstract

We propose a model of deformation and fracture of a composite based on the cement matrix (fiber-reinforced concrete) in tension. The model takes into account the presence of microcracks and pores in the structure of the material and the presence of reinforcing fibers. The computational formulas are proposed for the evaluation of the tensile strength of fiber-reinforced concrete. We analyze the influence of porosity and the volume content of reinforcing fibers on the strength of the composite. The experimental investigations and calculations reveal a noticeable increase in the tensile strength with the volume content of the fibers. The theoretical predictions are in good agreement with the experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.