Abstract

Tissue equivalents represent excellent model systems for elucidating principles of mechanobiology and for exploring methods to improve the functionality of tissue-engineered constructs. The simplest tissue equivalent is the free-floating fibroblast-populated collagen lattice. Although introduced over 30 years ago, the associated mechanics of the cell-mediated compaction of this lattice was only recently analyzed in detail. The goal of this paper was to build on this recent stress analysis by developing a computational model of the evolving geometry, regionally varying material properties and cell stresses, and overall residual stress fields during the first two days of compaction. Baseline results were found to agree well with most experimental observations, namely evolving changes in radius, thickness, and material symmetry, yet hypothesis testing revealed aspects of the mechanobiology that require more experimental attention. Given the generality of the proposed framework, we submit that modifications and refinements can be used to study many similar systems and thereby help guide future experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.