Abstract

Cataract surgery is an invasive procedure whereby lens fibers are removed through a permanent central hole, or capsulorhexis, in the surrounding lens capsule and replaced with an artificial intraocular lens (IOL). Remnant lens epithelial cells subsequently transdifferentiate to a more contractile and synthetic wound-healing phenotype, which causes significant structural and mechanical adaptations of the residual lens capsule. The goal of this study is to present a computational model capable of capturing salient features of the biomechanical evolution of the lens capsule following cataract-like surgery. The model is shown to predict marked long-term increases in thickness and stiffness of the lens capsule nearest the edge of the capsulorhexis comparable to reported measurements. Such models represent a first step toward understanding better the long-term interactions between the residual lens capsule and implanted IOL, thus initiating a new paradigm for the design of improved IOLs, including those having an accommodative feature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call