Abstract

In this paper we propose a Systems Biology approach to understand the molecular biology of the Epidermal Growth Factor Receptor (EGFR, also known as ErbB1/HER1) and type 1 Insulin-like Growth Factor (IGF1R) pathways in non-small cell lung cancer (NSCLC). This approach, combined with Translational Oncology methodologies, is used to address the experimental evidence of a close relationship among EGFR and IGF1R protein expression, by immunohistochemistry (IHC) and gene amplification, by in situ hybridization (FISH) and the corresponding ability to develop a more aggressive behavior. We develop a detailed in silico model, based on ordinary differential equations, of the pathways and study the dynamic implications of receptor alterations on the time behavior of the MAPK cascade down to ERK, which in turn governs proliferation and cell migration. In addition, an extensive sensitivity analysis of the proposed model is carried out and a simplified model is proposed which allows us to infer a similar relationship among EGFR and IGF1R activities and disease outcome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.