Abstract
The subject of this paper is the general formulation of a model for scarf adhesive joints in timber beams within the framework of plane linear elasticity. It is assumed that wood is orthotropic. The joint can be subjected to a complex loading state including an axial force, a bending moment and a shear force. The joint model is given in displacements by means of a set of four partial differential equations of the second order. Boundary conditions cater for sharp edges in the adherends. Complete solutions to theory of elasticity equations are presented and discussed. The manner in which the joint transmits the axial force, the bending moment and the shear force is presented. It is shown that the scarf joint does not feature stress concentrations and that there exists an approximate equivalence of displacements and stress states in scarf jointed and continuous elements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Drewno. Prace Naukowe, Doniesienia, Komunikaty = Wood. Research Papers, Reports, Announcements
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.