Abstract

In the presented paper a calculation procedure for determination of dynamic load capacity of large three-row roller slewing bearings is presented. The calculation procedure consists of three main parts: (i) determination of internal contact force distribution in a large three-row roller slewing bearing with consideration of bearing clearances and ring support deformations, (ii) determination of stress field in the contact area between raceway and rollers as a consequence of contact forces and (iii) determination of the bearing’s fatigue life due to contact fatigue of the raceway. The internal contact force distribution is determined numerically by using a symmetry 3D FEM-model of a large three-row roller slewing bearing. Another numerical procedure is used to determine the stress field in the contact area between rollers and raceway. This problem is studied on different roller types: cylindrical roller (without profile correction), fully crowned roller (logarithmic-profile) and partially crowned roller (ZB-profile). Numerically determined contact stresses then serve as a basis for fatigue analyses, where the bearing’s service life of the bearing is determined by using the stress-life approach, considering typical material parameters of the bearing’s raceway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call