Abstract

Satellite glial cells (SGCs) are glial cells found in the peripheral nervous system where they tightly envelop the somata of the primary sensory neurons such as dorsal root ganglion (DRG) neurons and nodose ganglion (NG) neurons. The somata of these neurons are generally compactly packed in their respective ganglia (DRG and NG). SGCs covering a neuron behave as an insulator of electrical activity from neighbouring neurons within the ganglion. Several studies have however shown that the somata show "cross-depolarization" (CD). Origin of CDs has been hypothesized to be chemical in nature: either from neurotransmitter release from both SGCs and somata or from elevation of extracellular potassium concentration ([K]o) in the vicinity of somata. Here, we investigate the role of Kir4.1 channels on SGC and diffusion/clearance factor (β) of [K]o from the space between SGC and DRG neuron somata to the bulk extracellular space in ganglion. We show using two "Soma-SGC Units" interacting via gap junction that a combination of Kir4.1 and β could be responsible for CD between DRG neuron somata in pathological conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call