Abstract

A computational model for predicting both the location and the required number of cycles for bending fatigue failure in surface hardened spur gears is proposed. Linear elastic stresses and strains in a single tooth bending fatigue test are corrected for elastic–plastic material behavior. The tooth root region of spur gear is divided into layers. Fatigue properties are assigned to each layer via the hardness method. Based on the multiaxial fatigue criteria, fatigue failure location and corresponding fatigue lives are estimated. Predicted fatigue lives, failure locations, and transition from surface to subsurface fatigue failure show good agreement with the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.