Abstract
Deep-red fluorescence was implemented in this fully injectable, nonenzymatic glucose biosensor design to allow for better light penetration through the skin, particularly for darker skin tones. In this work, a novel method was developed to synthesize Cy5.5 labeled mannose conjugates (Cy5.5-mannobiose, Cy5.5-mannotriose, and Cy5.5-mannotetraose) to act as the fluorescent competing ligand in a competitive binding assay with the protein Concanavalin A acting as the recognition molecule. Using fluorescence anisotropy (FA) data, a computational model was developed to determine optimal concentration ratios of the assay components to allow for sensitive glucose measurements within the physiological range. The model was experimentally validated by measuring the glucose response via FA of the three Cy5.5-labeled mannose conjugates synthesized with Cy5.5-mannotetraose demonstrating the most sensitive response to glucose across the physiological range. The developed method may be broadly applied to a vast range of commercially available fluorescent dyes and opens up opportunities for glucose measurements using nonenzymatic assays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.