Abstract
Since the closed nuclear fuel cycle suggests that plutonium is extracted from irradiated fuel and is recycled in nuclear reactors as part of the loaded fuel, proliferation resistance of fissile materials (plutonium) is becoming a problem of a practical significance. It is important to understand to what extent the physical and technical properties of fissile materials are capable to prevent these from being diverted to nonenergy uses. This paper considers the term ”proliferation resistance” from a physical and technical point of view with no measures taken for the physical protection, accounting and control of nuclear materials. Thus, proliferation resistance of plutonium means that it is technically impossible to fabricate a nuclear explosive device (NED) of the implosion type due to the overheating of the device’s components and the resultant NED failure. The following conclusions have been made. The assessment of the plutonium proliferation resistance is not justified where it relies on the analysis of an implosion-type NED excluding the use of modern heat-resistant and heat-conducting chemical explosives (CE) which are inaccessible. Consideration of the asymptotic temperature profile in the NED components is not justified enough for the development of plutonium proliferation resistance recommendations. No options enabling the slowdown of the NED warm-up process have been exhausted for analyzing the physical and technical factors that determine the proliferation resistance of plutonium. The assessment of the plutonium proliferation resistance is not justified where it relies on the analysis of an implosion-type NED excluding the use of modern heat-resistant and heat-conducting chemical explosives (CE) which are inaccessible. Consideration of the asymptotic temperature profile in the NED components is not justified enough for the development of plutonium proliferation resistance recommendations. No options enabling the slowdown of the NED warm-up process have been exhausted for analyzing the physical and technical factors that determine the proliferation resistance of plutonium. General conclusion. The underlying rationale in a fundamental monograph by Dr. G. Kessler proved to be insufficiently valid, which has led to an unfounded inference as to the status of the plutonium proliferation resistance. The development of the procedures used and other factors taken into account are expected to increase the requirements to the content of the 238Pu isotope in plutonium for ensuring its proliferation resistance.
Highlights
Research ArticleComputational model and physical and technical factors determining the plutonium proliferation resistance*
It was reported in 1977 that the USA successfully tested in 1962 an nuclear explosive device (NED) based on reactor-grade plutonium (Gillette 1977)
As plutonium is an intense source of spontaneous neutrons, and no efficient barrel-type NED can be built on its basis, (Heising-Goodman 1980) considers a model of an implosion-type NED in the form of a fissile material sphere surrounded by layers of tamper, the chemical explosive (EC) and the outer shell
Summary
Computational model and physical and technical factors determining the plutonium proliferation resistance*.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.