Abstract

Computational micromechanics techniques are applied towards determining the effective electrical conductivity of carbon nanotube-polymer nanocomposites containing bundles of SWCNTs at a wide range of SWCNT volume fractions above and below the observed percolation concentrations. The model is applied for fully aligned nanotube bundle orientations in order to elucidated the relative impact of clustering and nanoscale effects on the effective electrical conductivity of nanocomposites. Nanocomposites consisting of aligned, well-dispersed and clustered/bundled SWCNTs are studied to indicate the influence of clustering on the effective electrical conductivity. A parametric study in terms of interphase thickness and interphase conductivity for both the well-dispersed and clustered arrangements is conducted to allow for the assessment of both the independent influence of the interphase layer and of the combined effects of clustering and interphase regions on the effective electrical conductivity of nanocomposites with aligned SWCNTs. The resulting nanocomposite electrical conductivities are discussed in terms of two mechanisms proposed in the literature for the low volume fraction electrical percolation observed in nanocomposites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.