Abstract

Abstract This work presents a computational material model of flexible woven fabric for finite element impact analysis and simulation. The model is implemented in the nonlinear dynamic explicit finite element code LSDYNA. The material model derivation utilizes the micro-mechanical approach and the homogenization technique usually used in composite material models. The model accounts for reorientation of the yarns and the fabric architecture. The behavior of the flexible fabric material is achieved by discounting the shear moduli of the material in free state, which allows the simulation of the trellis mechanism before packing the yams. The material model is implemented into the LSDYNA code as a user defined material subroutine. The developed model and its implementation is validated using an experimental ballistic test on Kevlar® woven fabric. The presented validation shows good agreement between the simulation utilizing the present material model and the experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.