Abstract

Background 1.2% of the yeast genes are estimated to encode enzymes that catalyze the transfer of a methyl group from S-adenosylmethionine (AdoMet) to protein, nucleic acid, lipid, and small molecule substrates [1]. These enzymes function in biosynthesis, regulating metabolic pathways, and controlling gene expression, including writing the histone code. BLAST and MEME/MAST analysis using the amino acid sequence of motifs have previously generated a list of putative Class I methyltransferases [2]. Recently we have used a combination of a new search algorithm and structural information to refine this analysis [3]. This study utilizes these updated methods of identifying motifs and scanning the proteome to predict new members of the different families of methyltransferases in different organisms. These new members may function in novel pathways or new modes of regulation.

Highlights

  • We have used a combination of a new search algorithm and structural information to refine this analysis [3]. This study utilizes these updated methods of identifying motifs and scanning the proteome to predict new members of the different families of methyltransferases in different organisms. These new members may function in novel pathways or new modes of regulation

  • Sequence similarity networks are used to predict the probable substrates for the putative methyltransferases [3]

  • 1.2% of the yeast genes are estimated to encode enzymes that catalyze the transfer of a methyl group from S-adenosylmethionine (AdoMet) to protein, nucleic acid, lipid, and small molecule substrates [1]

Read more

Summary

Computational methods to identify novel methyltransferases

Background 1.2% of the yeast genes are estimated to encode enzymes that catalyze the transfer of a methyl group from S-adenosylmethionine (AdoMet) to protein, nucleic acid, lipid, and small molecule substrates [1]. These enzymes function in biosynthesis, regulating metabolic pathways, and controlling gene expression, including writing the histone code. We have used a combination of a new search algorithm and structural information to refine this analysis [3] This study utilizes these updated methods of identifying motifs and scanning the proteome to predict new members of the different families of methyltransferases in different organisms. These new members may function in novel pathways or new modes of regulation

Materials and methods
Conclusion
Findings
Petrossian TC and Clarke SG

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.