Abstract

This volume not only covers the fundamental concepts of fracture mechanics, but also the computational methodologies necessary for practical engineering designs aimed at fracture control. It gives a concise summary of various fracture theories: linear elastic, elastic-plastic, and dynamic fracture mechanics of metals and composites. Novel numerical methods (finite element and boundary element) that enable the treatment of complicated engineering problems are emphasized. Examined are problems of linear elastic fracture of metallic and non-metallic composite materials, three-dimensional problems of surface flaws, elastic-plastic fracture, stable crack growth, and dynamic crack propagation. A comprehensive outline of the energetic approach and energy integrals on fracture mechanics is also given. Contents: Preface. Parts: I. Chapters: 1. Fracture: Mechanics or Art? (F. Erdogan). II. 2. Linear Elastic Fracture Mechanics (A.S. Kobayashi). 3. Elastic-Plastic Fracture (Quasi-Static) (S.N. Atluri and A.S. Kobayashi). 4. Dynamic Crack Propagation in Solids (L.B. Freund). 5. Energetic Approaches and Path-Independent Integrals in Fracture Mechanics (S.N. Atluri). III. 6.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.