Abstract
BACE-1 is a membrane associated aspartyl protease and is one of the enzymes responsible for the hydrolysis of the amyloid precursor protein. Due to its central role in the generation of the amyloid-β peptide, it is considered as a primary drug target for Alzheimer's disease. BACE-1 has been the focus of many drug discovery programs aimed at identifying inhibitors that effectively block this enzyme and trigger the sought therapeutic effects. Thanks to the availability of a large number of crystal structures of the catalytic domain of this enzyme, computational methods, ranging from molecular dynamics simulations, quantum mechanical calculations and ligand docking, have played a fundamental role in almost every hit discovery and hit optimization campaign performed on this target. The present article reviews the latest computational modeling and drug discovery efforts that have been carried out on this target.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.