Abstract

AbstractAs climate changes, regional responses may become more apparent; impacts often can become natural hazards, adversely affecting millions of people, on all continents and most nations. The coupling of hazards to climate change scenarios is a great challenge of climate change science. Nevertheless, it is extremely important to observe, simulate and ultimately understand this coupling, for the benefit of society and sustainability of the Earth's environment. Different applied mathematical techniques have been used to discern real effects of these changes and study long term trends. Moreover, those techniques can be applied in addressing the intensity and frequency of extreme events associated with climate change at regional scales and would be an important step in facing future extreme events associated with climate change. Computational methods include applying statistical data analysis, mesoscale and climate simulations while assisting modeling efforts with satellite based observations. Predictive analytics platforms would be very useful for assessing impacts of climate variability and change on the frequency and intensity of extreme events and how these extreme events can affect water and air quality issues globally. These tools are an innovative technology that applies data mining methods, predictive models, analysis and reporting to data, without the inherent limitations of current On Line Analytical Processing tools that suffer from cube rigidity, database explosion and dimensional constriction. Climate‐induced changes are complex and vary across a wide range of dimensions. An important part of predictive analytics platforms are their unlimited dimensionality and the segmentation of data by ‘physical’ or ‘performance’ characteristics. For example, a physical dimension might be the climate divisions in the state of California. A performance dimension could be the arithmetical, mathematical, or statistical segmentation of data based on its performance with regard to time. WIREs Comput Stat 2012 doi: 10.1002/wics.1213This article is categorized under: Applications of Computational Statistics > Computational Climate Change and Numerical Weather Forecasting Applications of Computational Statistics > Signal and Image Processing and Coding Data: Types and Structure > Time Series, Stochastic Processes, and Functional Data

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.