Abstract
A combination of enzyme kinetics and X-ray crystallographic analysis of site-specific mutants has been used to probe the determinants of substrate specificity for the enzyme α-lytic protease. We now present a generalized model for understanding the effects of mutagenesis on enzyme substrate specificity. This algorithm uses a library of side-chain rotamers to sample conformation space within the binding site for the enzyme—substrate complex. The free energy of each conformation is evaluated with a standard molecular mechanics force field, modified to include a solvation energy term. This rapid energy calculation based on coarse conformation sampling quite accurately predicts the relative catalytic efficiency of over 40 different α-lytic protease—substrate combinations. Unlike other computational approaches, with this method it is feasible to evaluate all possible mutations within the binding site. Using this algorithm, we have successfully designed a protease that is both highly active and selective for a non-natural substrate. These encouraging results indicate that it is possible to design altered enzymes solely on the basis of empirical energy calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.