Abstract

A Stochastic Turing machine (STM) is a Turing machine that can perform nondeterministic and probabilistic moves and alternate between both types. Such devices are also called games against nature, Arthur-Merlin games, or interactive proof systems with public coins. We give an overview on complexity classes defined by STMs with space resources between constant and logarithmic size and constant or sublinear bounds on the number of alternations. New lower space bounds are shown for a specific family of languages by exploiting combinatorial properties. These results imply an infinite hierarchy with respect to the number of alternations of STMs, and nonclosure properties of certain classes.KeywordsMemory StateSpace BoundWord ProbabilityInput TapeLogarithmic SpaceThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.