Abstract

The Faure sequence is one of the well-known quasi-random sequences used in quasi-Monte Carlo applications. In its original and most basic form, the Faure sequence suffers from correlations between different dimensions. These correlations result in poorly distributed two-dimensional projections. A standard solution to this problem is to use a randomly scrambled version of the Faure sequence. We analyze various scrambling methods and propose a new nonlinear scrambling method, which has similarities with inversive congruential methods for pseudo-random number generation. We demonstrate the usefulness of our scrambling by means of two-dimensional projections and integration problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.