Abstract

Sequestration of aromatic volatile organic compounds (VOCs) via metal-organic frameworks (MOFs) as sorbents is a viable means of environmental preservation. In this investigation, we shed light on the key features associated with MOFs that govern the selective uptake of a subclass of VOCs containing benzene, toluene, ethylbenzene, and xylenes (BTEX). We investigate, through a multistep computational framework including ab initio electronic structure and classical molecular dynamics simulations, the energetic and dynamical properties associated with BTEX capture in three MOFs: HKUST-1, ZIF-8, and MIL-53. Our work demonstrates the importance of considering both static and dynamical properties upon introduction of guest molecules in such computational investigations. We elucidate the key geometric factors associated with efficient capture of BTEX compounds and highlight possible postsynthetic modifications that can be used to produce next generation sorbents for BTEX capture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.