Abstract
Metal matrix composites (MMCs) are regarded to be one of the most principal classifications in composite materials. The thermal characterization of hybrid MMCs has become increasingly important in a wide range of applications. Thermal conductivity is one of the most important properties of MMCs. Since nearly all MMCs are used in various temperature ranges, measurement of thermal conductivity as a function of temperature is necessary in order to know the behavior of the material. In the present research, evaluation of thermal conductivity has been accomplished for aluminum alloy (Al) 6061, silicon carbide (SiC) and graphite (Gr) hybrid MMCs from room temperature to [Formula: see text]C. Al-based composites reinforced with SiC and Gr particles have been prepared by stir casting technique. The thermal conductivity behavior of hybrid composites with different percentage compositions of reinforcements has been investigated using laser flash technique. The results have indicated that the thermal conductivity of the different compositions of hybrid MMCs decreases by the addition of Gr with SiC and Al 6061. Few empirical models have been validated concerning with the evaluation of thermal conductivity of composites. Using the experimental values namely density, thermal conductivity, specific heat capacity and enthalpy at varying temperature ranges, computational investigation has been carried out to evaluate the thermal gradient and thermal flux.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computational Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.