Abstract

Poly(ethylene terephthalate) (PET) has been widely utilized in daily life, but its non-degradability has induced severe environmental and health problems. Recently, PETase, which has been isolated from bacterium Ideonella sakaiensisis, was reported to have the highest PET degradation activity and specificity under room temperature, but no crystal structure for PET in complex with PETase has been reported. To provide deep insight into the binding mode of PET polymer on PETase and the binding interactions, we employed molecular docking and molecular dynamics simulations to study the substrate binding at the atomic level. Different PET oligomers have been studied with chain lengths varying from 2 to 8. In addition, the binding energies and hot-spot residues were analyzed to gain better insights into the binding mechanism by MM/GBSA approach. The PET oligomers adopt stable and reactive conformations in a shallow cleft on a flat surface of PETase. The binding cleft can only accommodate four moieties, and others beyond the region will be stabilized by the π–stacking interactions with Trp156 at the terephthalic acid terminal. Our studies provide a clear picture of how the binding mode of PET polymer and its interactions with PETase change with the chain length. Those studies would provide useful information for the rational design of catalytically more efficient PETase variants toward plastic degradation. Communicated by Ramaswamy H. Sarma

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.