Abstract

Density functional theory (DFT) calculations were performed on the multistep hydrodeoxygenation (HDO) of acetone (CH3COCH3) to propylene (CH3CHCH2) on a molybdenum oxide (α-MoO3) catalyst following an oxygen vacancy-driven pathway. First, a perfect O-terminated α-MoO3 (010) surface based on a 4 × 2 × 4 supercell is reduced by molecular hydrogen (H2) to generate a terminal oxygen (Ot) defect site. This process occurs via a dissociative chemisorption of H2 on adjacent surface oxygen atoms, followed by an H transfer to form a water molecule (H2O). Next, adsorption of CH3COCH3 on the oxygen-deficient Mo site forms an O–Mo bond and then the chemisorbed CH3COCH3 forms CH3COCH2 by transfer of an H atom to an adjacent Ot site. The surface bound hydroxyl (OH) then transfers the H atom to the immobilized O atom to form surface-bound enol, CH3CHOCH2. The next step releases CH3CHCH2 into the gas phase, while simultaneously oxidizes the surface back to a perfect O-terminated α-MoO3 (010) surface. The adsorption of H2,...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.