Abstract

The geometries, stabilities, and electronic properties of TiSin (n=2-15) clusters with different spin configurations have been systematically investigated by using density-functional theory approach at B3LYP/LanL2DZ level. According to the optimum TiSin clusters, the equilibrium site of Ti atom gradually moves from convex to surface, and to a concave site as the number of Si atom increases from 2 to 15. When n=12, the Ti atom in TiSi12 completely falls into the center of the Si outer frame, forming metal-encapsulated Si cages, which can be explained by using 16-electron rule. On the basis of the optimized geometries, various energetic properties are calculated for the most stable isomers of TiSin clusters, including the average binding energy, the highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO-LUMO) gap, fragmentation energy, and the second-order difference of energy. It is found that at size n=6,8,12 the clusters are more stable than neighboring ones. According to the Mulliken charge population analysis, charges always transfer from Si atoms to Ti atom. Furthermore, the HOMO-LUMO gaps of the most stable TiSin clusters are usually smaller than those of Sin clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.