Abstract

Possible reaction intermediates of the histidine ammonia-lyase (HAL) reaction were investigated within the tightly closed active site of HAL from Pseudomonas putida (PpHAL). The closed structure of PpHAL was derived from the crystal structure of PpHAL inhibited with L-cysteine, in which the 39-80 loop including the catalytically essential Tyr53 was replaced. This modified loop with closed conformation was modeled using the structure of phenylalanine ammonia-lyase from Anabaena variabilis (AvPAL) with a tightly closed active site as a template. Three hypothetical structures of the covalently bound intermediate in the PpHAL active site were investigated by conformational analysis. The distances between the acidic pro-S β-hydrogen of the ligand and the appropriate oxygen atoms of Tyr53, Ty280 and Glu414--which may act as enzymic bases--in the conformations of the three hypothetical intermediate structures were analyzed together with the substrate and product arrangements. The calculations indicated that the most plausible HAL reaction pathway involves the N-MIO intermediate structure in which the L-histidine substrate is covalently bound to the N-3,5-dihydro-5-methylidene-4H-imidazol-4-one (MIO) prosthetic group of the apoenzyme via the amino group. Density functional theory (DFT) calculations--on a truncated model of the N-MIO intermediate containing a Zn²⁺ ion coordinated to the imidazole ring of the ligand and to His83, Met382 and a water molecule--indicated that Zn-complex formation plays a role in the reactivity and substrate specificity of HAL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call