Abstract

Solar energy conversion and storage are vital for combating climate change. Molecular solar thermal systems offer a promising solution, where energy is stored in molecular compounds. This study investigates dyad molecular photoswitches by combining bicyclooctadiene/tetracyclooctane and dihydroazulene/vinylheptafulvene systems with phenyl and cyano groups. Density functional theory calculations were employed to determine molecular properties and consider solvation effects in toluene and dichloromethane. The results show that the combined systems have a predicted storage energy of up to 206.14 kJ mol-1 and an absorption peak at 390.26 nm with appreciable intensity. These dyad photoswitches exhibit favorable properties for molecular solar thermal storage and other applications. A comparison with individual photoswitches reveals advantages and disadvantages. The most effective conjugate has a slightly lower storage density than an equal mixture of individual systems, but it demonstrates better absorption characteristics, with improved overlap with the solar spectrum and higher absorption intensity. These findings contribute to the understanding of dyad molecular photoswitches, showcasing their potential for advanced energy storage and conversion technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.