Abstract

Density functional theory calculations were employed to investigate the (001), (210), (III), and (110) surfaces of, F~S2' The surface free ene:gies were calculated in equilibrium with a sulfur environment using firstpnnclples based thermodynamics approach. Surfaces that feature metal atoms in their outermost layer are predicted to be higher m energy. Wlthm the studied subset of (I x I) terminations, the stoichiometric (001) surface termmated by a layer of sulfur atoms is the most stable for sulfur-lean condition. For increasingly sulfur-nch enVIronment, two structures were found to have notably lower surface energies compared to others. They have (210) and (Ill) orientation, both terminated by layers of sulfur. Interestingly, these surfaces are nonstoichiometric exhibiting an excess of sulfur atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.