Abstract

A computational fluid dynamics simulation method based on large eddy simulation is presented and applied to compute the sunroof buffeting of a sport utility vehicle. The simulation result, i.e. the buffeting level curve, coincides well with the road test. The simulation method is then employed to investigate the sunroof buffeting of a vehicle during the development process in the range of 30 km/h–90 km/h. The results show that the most severe sunroof buffeting occurs at 70 km/h, which corresponds to the resonant frequency of the cabin. Flow field visualizations reveal that strong pressure fluctuations are generated inside the cabin due to vortex shedding from the leading edge and impinging onto the trailing edge of the sunroof opening, which explains the mechanism of sunroof buffeting. A new deflector with a gap and a notched upper edge is designed to replace the original castle type deflector. The simulation results show that the newly designed deflector can reduce the buffeting level to 97.9 dB; that is, the sunroof buffeting is completely eliminated. Moreover, the phenomenon of sunroof buffeting reduction is explained by comparing and analyzing the flow field between the newly designed deflector and the original deflector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.