Abstract
This work presents the results of using tree-based models, including Gradient Boosting, Extra Trees, and Random Forest, to model the solubility of hyoscine drug and solvent density based on pressure and temperature as inputs. The models were trained on a dataset of hyoscine drug with known solubility and density values, optimized with WCA algorithm, and their accuracy was evaluated using R2, MSE, MAPE, and Max Error metrics. The results showed that Gradient Boosting and Extra Trees models had high accuracy, with R2 values above 0.96 and low MAPE and Max Error values for both solubility and density output. The Random Forest model was less accurate than the other two models. These findings demonstrate the effectiveness of tree-based models for predicting the solubility and density of chemical compounds and have potential applications in determination of drug solubility prior to process design by correlation of solubility and density to input parameters including pressure and temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.