Abstract

This paper presents an alternative, computational intelligence based paradigm for biological attack detection. Conventional approaches to this difficult problem include sensor technologies and analytical modeling approaches. However, the processes that constitute the environmental background as well as those which occur as the result of an attack are extremely complex. This phenomenological complexity, in terms of both physics and biology aspects, is a challenge difficult to overcome by conventional approaches. In contrast to such approaches, the proposed approach is centered on automatic learning to discriminate between sensor signals that are in a normal range from those that are likely to represent a biological attack. It is argued that constructing machine learning methods robust enough to perform such a task is often more feasible than constructing an adequate model that could form a basis for bioattack detection. The paper discusses machine learning and multisensor information fusion methods in the context of biological attack detection in a subway environment, including recognition architecture and its components. However, the applicability of the proposed approach is much broader than the subway bioattack protection case, extending to a wide range of CBR defense applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.