Abstract

A novel 3D watermarking algorithm by combining use of computational integral imaging (CII) and cellular automata transform (CAT) is proposed in this paper. In this proposed scheme, first, the original image signal is decomposed into three resolution levels by using the level-3 2D CAT, and meanwhile, the middle-frequency domains are obtained. Then, an elemental images (EIs) array is generated by recording the information of rays of light coming from an object through a pinhole array in the CII system. The EIs array is encrypted by linear maximum-length cellular automata as the encrypted watermark embedded into the CAT middle-frequency domains. Finally, the watermarked image is obtained by using the level-3 2D inverse CAT. To verify the usefulness of the proposed algorithm, we carry out the computational experiments and present the experimental results for various attacks. Experimental results show that this proposed watermarking system provides excellent results in unobtrusiveness and robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call