Abstract

The investigation of the role of the electric field in systems of widespread interest employing computational techniques is an emerging area of research. The outcome of applying an oriented external electric field (OEEF) on the geometric and electronic properties of the chemically unique π-conjugated cyclic carbon ring compounds has been explored with density functional theory (DFT). Distinct changes in the structural and electronic features of such ring compounds are observed upon the application of OEEFs. Importantly, the calculations indicate that a mixed aliphatic-aromatic conjugated ring converts from a singlet to a triplet after the application of an OEEF, suggesting potential applications in optoelectronics for such molecules, without the need for photochemically induced change in the spin state. Furthermore, the influence of built-in local electric fields (LEFs) present in naturally occurring macrocyclic systems such as valinomycin has also been explored. Static and ab initio molecular dynamics (AIMD) calculations indicate that LEFs are the primary driving factor in determining the energetically favoured position of counter anions such as chloride (Cl- ) in the potassium (K+ ) and sodium (Na+ ) coordinated valinomycin macrocycle structures: they exist inside the cage in the case of K+ sequestration by valinomycin and outside for Na+ . This divergence has been proposed to be the determining factor for the selectivity of the valinomycin macrocycle for binding a K+ cation over Na+ .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.