Abstract

Targeting the mu opioid receptor (MOR) by applying orthosteric ligands is the most frequently employed method to treat opioid use disorder (OUD). Unfortunately, most of MOR orthosteric ligands produce severe side effects, mainly due to their low selectivity over other opioid receptors. In contrast, some G protein-coupled receptor allosteric modulators have been reported to exhibit high subtype selectivity and can effectively modulate the potency and/or efficacy of orthosteric ligands. Recently, NAQ and its analog NCQ were identified as novel MOR bitopic modulators. Interestingly, NAQ and NCQ were similar in structure but exhibited different efficacy profiles to the MOR. NAQ exhibited an antagonism activity to the MOR while NCQ showed a partial agonism activity to the MOR. In the present study, molecular modeling methods were applied to explore the putative molecular mechanisms of their different functional profiles to the MOR. When NAQ binding with the inactive MOR, the 'address' portion of NAQ interacted with the MOR allosteric site but showed no significant allosteric modulation of the efficacy of the 'message' portion of NAQ. However, when NCQ binding with the inactive and active MOR, the 'address' portion of NCQ seemed to be able to positively modulate the efficacy of the 'message' portion of NCQ at varying levels. Evidentially, the substituents at the 1'- and 4'-positions of the isoquinoline ring of NCQ seemed to play a critical role in the modulatory function of the 'address' portion of NCQ. These findings will be invaluable to develop our next generation of MOR bitopic modulators with high affinity and subtype selectivity to potentially treat OUD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.