Abstract

Iron is one of the most abundant transition metals in the earth's crust. It has attracted a lot of attention due to its low toxicity, bio-compatibility, and high natural abundance. Iron-catalyzed hydroamination, hydroalkoxylation, hydrocarboxylation, hydrosilylation, hydroboration, hydrophosphination, hydromagnesiation, and carbonylation reactions have therefore been developed over the past decades. However, despite many experimental and theoretical studies, a complete mechanistic understanding of iron-catalyzed hydrofunctionalisation at the molecular level has not yet been achieved. In this work, through density functional theory (DFT) calculations, we have shown the most feasible path for the hydroformylation of alkynes for an experimentally studied system. We have looked at the iron salt as a precatalyst without any external donor ligand, and the calculations revealed that hydrometalation followed by β-hydride elimination was favorable over the direct migration of the β-hydrogen to carbon. Furthermore, our calculations show that the solvent plays an important role in the hydromagnesiation reaction. Furthermore, we have employed an explicit solvent model, where the attachment of one molecule of solvent to the iron center was seen to stabilize the transition states significantly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call