Abstract
Bimolecular nucleophilic substitution (SN 2) reactions have been extensively studied in both theory and experiment. While research on C-centered SN 2 reactions (SN 2@C) has been ongoing, SN 2 reactions at neutral nitrogen (SN 2@N) have received increased attention in recent years. To recommend methods for dynamics simulations, the comparison for the properties of the geometries, vibrational frequencies, and energies is done between MP2 and six DFT functional calculations and experimental data as well as the high-level CCSD(T) method for CH3 O- +NH2 Cl/CH3 Cl reactions. The relative energy diagrams at the M06 method for CH3 O- with CH3 Y/NH2 Y reactions (Y=F, Cl, Br, I) in the gas and solution phase are explored to investigate the effects of the leaving groups, different reaction centers, and solvents. We mainly focus on the computational of inv-SN 2 and proton transfer (PT) pathways. The PT channel in the gas phase is more competitive than the SN 2 channel for N-center reactions, while the opposite is observed for C-centered reactions. Solvation completely inhibits the PT channel, making SN 2 the dominant pathway. Our study provides new insight into the SN 2 reaction mechanisms and rich the novel reaction model in gas-phase organic chemistry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chemphyschem : a European journal of chemical physics and physical chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.