Abstract

Peptide misfolding and aberrant assembly in membranous micro-environments have been associated with numerous neurodegenerative diseases. The biomolecular mechanisms and biophysical implications of these amyloid membrane interactions have been under extensive research and can assist in understanding disease pathogenesis and potential development of rational therapeutics. But, the complex nature and diversity of biomolecular interactions, structural transitions, and dependence on local environmental conditions have made accurate microscopic characterization challenging. In this review, using cases of Alzheimer's disease (amyloid-beta peptide), Parkinson's disease (alpha-synuclein peptide) and Huntington's disease (huntingtin protein), we illustrate existing challenges in experimental investigations and summarize recent relevant numerical simulation studies into amyloidogenic peptide-membrane interactions. In addition we project directions for future in silico studies and discuss shortcomings of current computational approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.