Abstract

The activity of UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) is essential for the biosynthesis of sialic acid, which is involved in cellular processes in health and diseases. GNE contains an N-terminal epimerase domain and a C-terminal kinase domain (N-acetylmannosamine kinase, MNK). Mutations of the GNE protein led to hypoactivity of the enzyme and cause sialurea or autosomal recessive inclusion body myopathy/Nonaka myopathy. Here, we used all-atom molecular dynamics (MD) simulations to comprehend the folding, dynamics and conformational stability of MNK variants, including the wild type (WT) and three mutants (H677R, V696M and H677R/V696M). The deleterious and destabilizing nature of MNK mutants were predicted using different prediction tools. Results predicted that mutations modulate the stability, flexibility and function of MNK. The effect of mutations on the conformational stability and dynamics of MNK was next studied through the free-energy landscape (FEL), hydrogen-bonds and secondary structure changes. The FEL results show that the mutations interfere with various conformational transitions in both WT and mutants, exposing the structural underpinnings of protein destabilization and unfolding brought on by mutation. We discover that, when compared to the other two mutations, V696M and H677R/V696M, H677R has the most harmful effects. These findings have a strong correlation with published experimental studies that demonstrate how these mutations disrupt MNK activity. Hence, this computational study describes the structural details to unravel the mutant effects at the atomistic resolution and has implications for understanding the GNE's physiological and pathological role. Communicated by Ramaswamy H. Sarma

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.